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We study interactions between the dark solitons of the parametrically driven nonlinear Schrödinger equation,
Eq. �1�. When the driving strength, h, is below ��2+1/9, two well-separated Néel walls may repel or attract.
They repel if their initial separation 2z�0� is larger than the distance 2zu between the constituents in the
unstable stationary complex of two walls. They attract and annihilate if 2z�0� is smaller than 2zu. Two Néel
walls with h lying between ��2+1/9 and a threshold driving strength hsn attract for 2z�0��2zu and evolve into
a stable stationary bound state for 2z�0��2zu. Finally, the Néel walls with h greater than hsn attract and
annihilate—irrespective of their initial separation. Two Bloch walls of opposite chiralities attract, while Bloch
walls of like chiralities repel—except near the critical driving strength, where the difference between the
like-handed and oppositely handed walls becomes negligible. In this limit, similarly handed walls at large
separations repel while those placed at shorter distances may start moving in the same direction or transmute
into an oppositely handed pair and attract. The collision of two Bloch walls or two nondissipative Néel walls
typically produces a quiescent or moving breather.
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I. INTRODUCTION

This paper deals with the parametrically driven, repulsive
nonlinear Schrödinger �NLS� equation:

i�t� + 1
2�X

2� + � − ���2� = h�* − i�� . �1�

Here h is the strength of the parametric driving and � is the
damping coefficient. In the absence of damping, i.e., when
�=0, this equation has the same stationary Bloch- and Néel-
wall solutions as the �2:1�-resonantly forced Ginzburg-
Landau equation and the relativistic Montonen-Sarker-
Trullinger-Bishop model �1–4�. However, unlike the
Ginzburg-Landau and the relativistic model, where only one
of these solutions �the Bloch wall� is linearly stable in their
region of coexistence, the NLS equation exhibits Bloch-Néel
bistability. Furthermore, both domain-wall solutions of the
NLS �also known as dark solitons or kinks� can move with
constant velocity, and the moving walls also turn out to be
linearly stable �5�. This multistability is a rare phenomenon
and leads one to wonder about the outcome of the soliton-
soliton interaction. The problem that is of ultimate interest to
a physicist, is formulated as follows: Given an initial con-
figuration of many different walls, will the asymptotic solu-
tion, as t→�, consist of predominantly Bloch walls, Néel

walls or possibly some other, more complicated, structures?
Will the walls form widely spaced, equidistant lattices, or
tightly bound clusters? In this paper we make the first step
towards answering these questions.

When ��0, Eq. �1� still has a dark soliton solution �in the
form of the Néel wall�; this solution was shown to be stable
for all � �5�. Our analysis of soliton interactions will natu-
rally include the case of nonzero damping, especially in view
of the wide range of applications of Eq. �1�.

Equation �1� was indeed derived in a broad variety of
physical situations. In fluid dynamics, the repulsive �“defo-
cusing”� parametrically driven NLS describes the amplitude
of the water surface in a vibrated channel with large width-
to-depth ratio �6–8�. �The case of the small width-to-depth
ratio gives rise to the attractive NLS �6–8�.� The same equa-
tion arises as an amplitude equation for the upper cutoff
mode in a chain of parametrically driven, damped nonlinear
oscillators �9�. In the optical context, it was derived for the
doubly resonant ��2� optical parametric oscillator in the limit
of large second-harmonic detuning �10�. Next, stationary so-
lutions of Eq. �1� with �=0 minimize the Ginzburg-Landau
free energy of the anisotropic XY model. Here F=�FdX,
where

F = 1
2 ��XM�2 − �1 + h�M2 + 1

2M4 + 2hMy
2 + F0,

and M�X�= �0,My ,Mz� is the magnetization vector whose
nontrivial components serve as the real and imaginary parts
of the complex field ��X� in �1�, �=My + iMz. This model
appeared in studies of stationary domain walls in easy-axis
ferromagnets near the Curie point �11�. Nonstationary mag-
netization configurations were considered in the overdamped
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limit, �t=−�F /��* �12�. The damped Hamiltonian dynam-
ics �t=−i�F /��*−�� provides a sensible alternative; this
is precisely our Eq. �1�.

Finally we note that Eq. �1� also arises in a completely
different magnetic context—that of a weakly anisotropic
easy-plane ferromagnet in a constant external magnetic field
�5�. Here, the external field �chosen parallel to the z axis�
forces the magnetization to be almost homogeneous, and Eq.
�1� describes small deviations ��=Mx+ iMy from the uni-
form magnetization M��0,0 ,1�. �Here � is a small param-
eter.� In the XY model, on the other hand, Eq. �1� governs the
magnetization vector itself.

The literature devoted to the interactions of dark solitons
and kinks is quite extensive �although perhaps not as vast as
for bright solitons and pulses�. Kinks are known to attract
antikinks in real-valued, single-component Klein-Gordon
equations, such as the sine-Gordon and 	4 theory �13�, with
and without damping terms �14�. The same is true for kinks
of the real Ginzburg-Landau equations ut=uxx−V��u� �14�.
These results admit simple interpretations; the kink-antikink
pair converges in order to minimize its total energy in the
former case, and to minimize the value of its Lyapunov func-
tional in the latter. Next, the dark solitons of the �undriven�
NLS equations are known to repel �15,16�. This can also be
understood as an attempt to minimize the energy of the pair,
at the expense of the gradient of the phase. Proceeding to the
domain-wall solutions of the parametrically driven
Ginzburg-Landau equation

�t� = 1
2�X

2� + � − ���2� − h�*, �2�

the Bloch wall and antiwall of opposite chiralities were
shown to attract, while those of like chiralities repel �17,18�.
�Here h�

1
3 , the region of stability of Bloch walls.� The Néel

wall and antiwall always repel in their stability region �h
�

1
3

� �17�. Unlike the case without driving, the interpretation
of these interactions is not straightforward though.

As for the driven NLS equation, the behavior of its Bloch
and Néel walls is even less predictable at the intuitive level,
while the variety of possible interacting partners is much
wider due to the multistability. We will see that the interac-
tion pattern is quite complicated indeed. The character of
interaction �repulsion vs attraction� will depend both on the
driving strength and the interwall separation. We will also
show that it is influenced by stationary complexes of walls,
stable and unstable.

This paper constitutes the first part of our project; here,
we restrict ourselves to interactions of the walls of the same
type, i.e., Néel-Néel and Bloch-Bloch interactions. The
analysis of the nonsymmetric situations, i.e., Néel-Bloch in-
teractions, requires a different mathematical formalism and
will be presented separately. �See Ref. �19�.�

The dynamics of the repelling solitons is, in a sense,
trivial: if the walls are initially at rest, they will simply di-
verge to the infinities. Less obvious is what the collision of
two attracting walls will result in. The study of the
asymptotic �as t→�� attractors arising in the parametrically
driven NLS constitutes the second objective of our work. We
will show that if the dynamics are dissipative, then, depend-

ing on the strength of the driving, colliding walls either an-
nihilate or form a stable stationary bound state. In contrast to
this, undamped collisions will be found to always produce a
breather, a spatially localized, temporally oscillating struc-
ture. Depending on the initial conditions, the breather propa-
gates or remains motionless, and in either case is found to
persist indefinitely.

The outline of this paper is as follows. The two funda-
mental solutions of Eq. �1�, the Bloch and Néel wall, are
introduced in the next section. For the analysis of the Bloch-
Bloch and Néel-Néel interaction we use the variational
method, under the assumption of well-separated walls. The
method is detailed in Sec. III and the resulting finite-
dimensional systems are analyzed in Secs. IV, VII, and VIII.
Section IV deals with the Néel walls; Sec. VII is devoted to
the Bloch walls of the opposite chirality, while the like-
chirality walls are examined in Sec. VIII. The conclusions of
the variational analysis have been verified in direct numeri-
cal simulations of the full partial differential equation. The
numerical simulations allow to advance beyond the limit of
well-separated walls; in particular, we use this approach to
examine the outcome of soliton collisions. We have allocated
a separate section �Sec. VI� to the Néel-Néel simulations
while the Bloch-Bloch simulations are reported in Secs. VII
and VIII, along with the corresponding variational results.
The nontrivial attractors mentioned above—the stationary
bound state in the case of dissipative dynamics, and the
breather in the undamped system—are further investigated in
Secs. V and IX, respectively. Finally, the main results of this
work are summarized in Sec. X.

II. DARK SOLITONS: PRELIMINARIES

Dark solitons are localized patches of low intensity
����2�1� in a high intensity background ����2=O�1��. The
admissible backgrounds are described by the stationary, spa-
tially homogeneous nonzero solutions of Eq. �1�,

�flat
�±� = iA±ei
±, �3�

where

A± = �1 ± �h2 − �2,

2
+ = arcsin
�

h
, 2
− = � − arcsin

�

h
. �4�

As one can easily check, for h�� the zero solution is the
only stable background and so dark solitons can only exist
for h��; this is the condition we are implicitly assuming in
this paper. It can be shown that �flat

�+� is stable for all values of
h�� while �flat

�−� is always unstable. We will only consider
dark solitons existing over the stable background so that all
solutions obey ���2→A+

2 as �X � →�. Accordingly, A stands
for A+ and 
 for 
+ for the rest of the paper.

It will be convenient to transform Eq. �1� so that the
asymptotic solution is independent of h and �. To this end,
we set
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��X,t� = iAei

�x,t�, x = AX . �5�

�We have also rescaled the spatial dependence for later con-
venience.� Under this transformation, Eq. �1� becomes

i
t +
A2

2

xx − A2�
�2
 + 
 + �A2 − 1�
* + i��
 − 
*� = 0.

�6�

This is the form of the parametrically driven, damped NLS
that we will be working with in this paper. The stable back-
ground solutions of Eq. �6� are simply 
flat= ±1.

Solutions to Eq. �6� with �
 � →1 as �x � →� can either be
topological �
�−� �=−
���� or nontopological �
�−� �
=
����. Equation �6� has two explicit topological solitons.
The first is the Néel, or Ising, wall �1,2,6,11,20�,


N�x� = tanh�x� , �7�

named after the Néel wall in magnetism, which is a domain
wall with the magnitude of the magnetization vector vanish-
ing at its center. The second topological solution, which ex-
ists only for �=0, is usually referred to as the Bloch wall
�1–4�:


B�x� = tanh�Bx� ± i�0 sech�Bx� . �8�

�In magnetism, a Bloch wall is a domain wall connecting the
two domains smoothly, with the magnetization vector re-
maining nonzero everywhere.� In Eq. �8�,

B =
2�A2 − 1

A
=� 4h

1 + h

and

�0 =
�4 − 3A2

A
=�1 − 3h

1 + h
. �9�

The solutions obtained by multiplying 
N and 
B by �−1�
will be called antiwalls, or antikinks.

The Bloch wall �8� exists in two chiralities. In the Bloch
wall with positive imaginary part, the phase of the complex
field 
�x� decreases �that is, the point on the unit circle
moves clockwise� as x varies from −� to +�. By analogy
with the right-hand rule of circular motion, we refer to this
wall as the right-handed Bloch wall. The phase of the Bloch
wall with negative imaginary part increases as x increases
�that is, the phase vector rotates counter-clockwise�. This
corresponds to a left-handed sense of rotation, so that this
wall will be called the left-handed Bloch wall. The antiwall
obtained by multiplying 
B by −1 has obviously the same
chirality as its parent wall, 
B. Regardless of their chirality,
Bloch walls only exist for h�

1
3 .

In Ref. �5�, it was proved that the Néel wall is stable for
all h��. The stability of the Bloch wall in its entire domain
of existence was demonstrated numerically �5�.

Examples of nontopological dark solitons are given by
stationary complexes, or bound states, of domain walls.
These can be formed by two dissipative Néel walls, or by a
Bloch and Néel wall—in the undamped situation. �See Refs.
�5,21�.� In condensed matter physics, these nontopological

solitons describe bubbles of one thermodynamic phase in
another one �22�. Accordingly, we will occassionally be re-
ferring to bound states of domain walls as solitonic bubbles.

III. INTERACTIONS BETWEEN THE WALLS:
THE METHOD

In this paper, we will be paying special attention to the
simplest situation where the interacting walls are initially at
rest. Choosing the origin of the coordinate axis midway be-
tween two Bloch or two Néel walls, one can verify that the
subsequent evolution will preserve this symmetric arrange-
ment �see below�. A symmetric pair of well separated walls
can be approximated by a product function


 = �1�x,t��2�x,t� , �10a�

where �1 and �2 represent the individual walls in the pair,

�1�x,t� = tanh�B�x + z�� − i�1 sech�B�x + z�� , �10b�

�2�x,t� = tanh�B�x − z�� + i�2 sech�B�x − z�� . �10c�

In Eq. �10�, �1 and �2 are time-dependent parameters ac-
counting for the deformation of the walls due to their inter-
action. The variable z=z�t� gives one-half the distance be-
tween the walls; without loss of generality, we take z to be
positive. Finally, the constant B characterizes the width of
the walls �B=B for Bloch walls and B=1 for Néel walls�.

Our analysis is based on the variational method. For this
method, we substitute the Ansatz �10� into the action integral
that gives rise to Eq. �6�,

S =	 Le2�tdt , �11�

where

L = Re	 
i
t

* −

A2

2
�
x�2 −

A2

2
�
�4 + �
�2

+
A2 − 1

2
�
2 + �
*�2� +

i�

2
�
2 − �
*�2� −

A2

2
�dx .

�12�

In what follows we introduce a small parameter �=e−2Bz.
Integrating off the explicit x dependence in �12�, produces a
finite-dimensional Lagrangian

L = T − V , �13a�

where

T = − �ż��1 + �2��1 − 2�1 − �1�2��� − 2�2��

−
2�

B
�� − 4�2���1

˙ �1 − �2
2� + �2

˙ �1 − �1
2�� , �13b�

and
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V =
A2B2 + 8A2 − 12

3B
��1

2 + �2
2� +

2A2

3B
��1

4 + �2
4�

+ 8
�4A2 − A2B2 − 4�z −
4

B
�A2 − 1����1�2

+
8

3B
�2�2A2�4B2 − 7� + �30A2 − 5A2B2 − 12���1

2 + �2
2�

+ 2A2�B2 − 11��1
2�2

2 − 4A2��1
4 + �2

4� + 4A2��1
2 + �2

2��1
2�2

2�

+ 16�2z�2A2�1 − B2� + �A2B2 − 6A2 + 4���1
2 + �2

2�

+ 2A2�1
2�2

2� +
4��

B
��1 − 4����1 + �2��1 + �1�2� . �13c�

�In �13b�, the overdot indicates differentiation with respect to
t.� The stationary action principle �S=0 yields then the
Euler-Lagrange equations for �1,2 and z. In deriving �13b�
and �13c� we neglected all powers of � higher than �2. One
can readily check that such terms would produce only
higher-order corrections in the resulting equations of motion.

Some comments must be made regarding the Ansatz �10�.
After a variational Ansatz has been substituted in the corre-
sponding field Lagrangian and the x-dependence integrated
away, all dynamical variables �or possibly their combina-
tions� can be grouped into canonically conjugate pairs. �See
Ref. �23� for review and references.� In particular, if the
waveform consists of two solitary waves and the separation
between two constituents, 2z, is chosen as one of the vari-
ables, the conjugate momentum is the phase gradient. This
fact is well known in the case where the constituents are
bell-shaped �“bright”� solitons �see, e.g., Refs. �24,25��. That
it remains true in a more general situation can be seen from
an analogy with quantum mechanics where the momentum
of the system is given by an eigenvalue of the operator 1

i �x.
�Since the eigenvalue must be real, the operator acts just on
the phase of the eigenfunction while the modulus is taken to
be constant.� Another simple analogy arises if we write 

=��ei�; this polar decomposition casts Eq. �1� with h=�=0
in the form of equations of gas dynamics, where � is the
density of the gas and �x� is its velocity, proportional to the
momentum.

In the case of bright solitons, each constituent soliton in
the Ansatz is usually multiplied by eik�x±z� �see, e.g., Refs.
�24,25��; then, the momentum conjugate to z is k. However,
in the case of kinks this simple recipe would violate the
boundary conditions at infinity. For this reason we have in-
troduced the phase gradient by allowing the imaginary parts
�1,2 sech�B�x±z�� of the kinks to be variable. The imaginary
parts decay as �x � →� and therefore making them variable is
compatible with the boundary conditions. Below, we will
show that �1 and �2 are indeed momenta canonically conju-
gate to z.

Another reason for introducing the phase gradient in this
way is a simple interpretation of the finite-dimensional mo-
menta �1 and �2 in terms of the original fields 
�x , t�. In-
deed, these variables coincide, modulo a numerical coeffi-
cient, with the field momenta of the two walls. The field
momentum integral has the form

P =
i

2
	 �
x

*
 − 
x

*�dx . �14�

For the undamped NLS �Eq. �6� with �=0�, the integral �14�
is conserved. The field momentum of the Néel wall �7�
equals zero, while that of the Bloch wall �8� is given by
PB= ���0. �The same sign convention is used here as for
Eq. �8�—the top sign applies for the right-handed wall, while
the bottom sign corresponds to the left handed wall.� It is not
difficult to check that the field momenta of the perturbed
walls �1 and �2 in the configuration �10� are P��1�=��1 and
P��2�=−��2.

In symmetric situations that we are concerned with, the
variables �1 and �2 �both of which are conjugate to the same
coordinate variable z� will eventually turn out to be related
due to the equations of motion. The calculations simplify,
however, if this relationship is established yet at the level of
the Lagrangian �13�, that is, before the equations of motion
have been derived.

The relationship between �1 and �2 depends on the type
of walls being considered. If the initial configuration consists
of two well-separated Néel walls at rest, or two quiescent
distant Bloch walls of opposite chirality, we have a symme-
try 
�x ,0�=
�−x ,0�. Since Eq. �6� is parity invariant, the
subsequent evolution will preserve this symmetry. Substitut-
ing the Ansatz �10� into 
�x , t�=
�−x , t�, we get �1=�2��.
The initial value of ��t� should be chosen close to zero for
Néel walls and close to ±�0 for Bloch walls �with the sign of
��0� depending on whether the wall placed on the right is
right- or left handed�.

If the initial configuration consists of two quiescent Bloch
walls of like chirality, the relationship between �1 and �2 is
not so trivial to establish. The reason is that Eq. �6� does not
preserve the symmetry 
*�x ,0�=
�−x ,0� of the initial con-
dition. In this case we must appeal to the field-momentum
considerations rather than symmetries. Substituting the An-
satz �10� into the integral �14�, we find that P�
�=���1

−�2��1+O�e−2Bz��. On the other hand, the total momentum
of two like-chirality walls which are initially at rest and far
away from each other, should be near �2��0. Therefore, for
moving walls the quantity �1−�2 must not be different from
�2�0 by more than O�e−2Bz�. This is accomplished by letting
�1= ��0+q�t� and �2= ±�0+q�t�. When z is large, the per-
turbation q�t� is small—but not necessarily as small as �.

The Euler-Lagrange equations corresponding to Eqs. �11�
and �13� are

�T

��
−

�V

��
−

d

dt

�T

��̇
− 2�

�T

��̇
= 0 �15a�

and

�T

�z
−

�V

�z
−

d

dt

�T

� ż
− 2�

�T

� ż
= 0. �15b�

In Eq. �15a�, we assumed the situation of �1=�2�� �that is,
two Néel or two oppositely handed Bloch walls�. In the other
case, i.e., when we have two Bloch walls of like chirality, �
should be replaced by q in Eq. �15a�. The integrals T and V
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can both be found explicitly and simplified assuming wide
separation of the walls.

Finally, we note that the variational method is not well
suited for the analysis of the Bloch-Néel interaction. The
reason for this is that the Bloch and Néel walls have different
widths, leading to terms in the Lagrangian which are not
periodic along the imaginary axis on the plane of complex x;
as a result, the Lagrangian cannot be obtained in closed
form. �When the walls have the same width, the integrals can
all be evaluated by integration along the rectangular contour
with one side on the real axis and the other on the line
Im x=� /B.� Consequently, we had to resort to a different
approach for the analysis of the Néel-Bloch interaction �see
Ref. �19�.� The resulting phenomenology is also very differ-
ent �19�.

IV. TWO NÉEL WALLS

In this case, we let B=1 and �1=�2��. In Eq. �15� we
discard products of powers of small quantities � and � for
which there are larger counterparts. For instance, we drop a
term proportional to �2� from an equation which already has
a term �� with a nonsmall coefficient. Here we keep in mind
that in some cases the damping � and the difference �A2

− 4
3 � can be small parameters, hence we cannot drop �2� in

favor of the term ��� or �A2− 4
3

���. With these simplifica-
tions, Eqs. �15a� and �15b� take the form

��̇ = 12�A2 − 4
3���

+ 32���2�2 + 16
3 A2�3� − 64�A2 − 1���2, �16a�

���̇ + 2��� = 32A2�2

− 24�A2 − 4
3��2�z + 32�A2 − 1���2.

�16b�

The subsequent analysis depends on the relation between the
damping and driving in the system.

A. �=O„1…

First we consider the case where � is not small. Assume,
in addition, that A2 is not close to 4

3 . �Later in this section we
will explore the situation where �A2− 4

3 � is small.� In this case
the terms in the second lines of �16a� and �16b� are smaller
than those in the first lines and can be neglected. The equa-
tions simplify to

��̇ = 12�A2 − 4
3��� , �17a�

���̇ + 2��� = 32A2�2. �17b�

Since � is small, the variable ��t� varies very slowly, �̇ /�

�. On the other hand, the variable ��t� will initially change
on a much faster scale. Within the time �t
�−1 it will “zap”
onto the nullcline

2��� = 32A2�2, �18�

after which the point �� ,�� will be slowly moving along this
parabola. According to Eq. �17a�, it will move towards

greater � �i.e., the separation 2z will decrease� if A2�
4
3 and

to smaller � if A2�
4
3 . That is, the walls will attract if A2

�
4
3 and repel if A2�

4
3 .

Note that this criterion is consistent with results for the
undamped, undriven case ��=0, A2=1� where the dark soli-
tons are known to repel �15,16�.

Since the above criterion has been derived under the as-
sumption that A2 is not very close to 4

3 , the value A2= 4
3

provides only a rough watershed between the two types of
interaction. In order to establish a more accurate borderline,
we zoom in on a narrow strip along the line A2= 4

3 on the
�� ,A2� plane. Assuming that �A2− 4

3 � is small �while � is not�,
Eq. �17a� should be replaced by

��̇ = 12�A2 − 4
3��� + 64

9 �3� − 64
3 ��2. �19�

Substituting �18� into �19� and dropping an O��7� term, we
obtain a one-dimensional dynamical system

��̇ =
256

��

A2 −

4

3
−

16

9
���3. �20�

When A2�
4
3 , ��t� tends to zero for all ��0�. For A2�

4
3 , the

system �20� has a stable fixed point at

� = 9
16�A2 − 4

3� . �21�

This fixed point corresponds to a stable bound state of two
Néel walls.

When A2 approaches 4
3 , the distance 2z=−ln � between

the walls in this bound state tends to infinity and so the
bound state does not exist for A2 smaller than 4

3 . This means
that A2= 4

3 is, in fact, an accurate borderline between the two
types of behavior. For A2�

4
3 , two walls repel whereas for

A2�
4
3 , the walls attract—except for A2 close to 4

3 , in which
case they form a stable bound state.

We should emphasize here that our present conclusions
pertain only to distant walls. In order to extend our under-
standing of the Néel wall dynamics beyond the limit of very
small �, one must analyze the dynamical system �16� without
neglecting any powers of � and � in it. This will be done
numerically in Sec. IV D below. We will show, in particular,
that in addition to the stable bound state of two walls, there is
also an unstable complex—at a shorter distance.

B. �A2− 4
3 � =O„1…; small �

When � is small, the system �16� becomes

��̇ = 12�A2 − 4
3��� , �22a�

���̇ + 2��� = 32A2�2 − 24�A2 − 4
3��2�z . �22b�

For either sign of A2− 4
3 , the origin is the only fixed point in

the system. Noting that the �-axis ��=0� is an invariant
manifold flowing into the fixed point and calculating the in-
dex of the vector field �22� along the semicircle �2+�2=R2,
��0, with R�1, we conclude that the fixed point is a stable
node for A2�

4
3 and a saddle for A2�

4
3 . Hence, for A2�

4
3 ,

all trajectories tend to the origin as t→� �Fig. 1�a��, i.e., the
walls repel.
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For A2�
4
3 , all trajectories fly away to infinity �Fig. 1�b��

implying the attraction of the walls. One may wonder
whether some trajectories coming from the lower half of the
phase plane, could flow into the origin �tangent to the verti-
cal axis.� A simple analysis of trajectories in a small neigh-
borhood of the origin shows that such behavior is, in fact,
impossible. Trajectories which seem to be approaching the

point �=�=0 close to the � axis, do turn away when they are
a small distance away from the origin. This is illustrated by
Fig. 1�c� which gives a blow-up of a small neighborhood of
the fixed point.

In Sec. IV C we will zoom in on a small neighborhood of
A2= 4

3 to draw a sharper boundary between domains of the
opposite types of interaction—similar to the way we have
done it for large �. We should also mention here that, as in
the preceding subsection, our current conclusions pertain to
walls with large separations.

The undamped case, �=0, is exceptional; in this case, the
entire � axis is a line of fixed points—they represent pairs of
infinitely separated walls moving at constant velocities. For
A2�

4
3 , the points with ��0 are stable and those with �

�0 unstable. Trajectories have the form of arcs starting on
the lower semiaxis and flowing into points on the upper
semiaxis: ��t�→0, ��t�→�*�0 as t→� �Fig. 2�a��. The
separation between the walls corresponding to the points on
the upper semiaxis grows linearly: z→− 6

�
�A2− 4

3
��*t; that is,

the evolution produces two Néel walls moving away from
each other at a constant speed.

In the undamped case with A2�
4
3 , the stable points are

those with ��0 and unstable those with ��0. Since �̇�0
on the horizontal axis �where �=0�, trajectories starting on
the upper semiaxis cannot cross to the negative-� half-plane
and must escape to the positive-� infinity: �→�, �→� as

FIG. 1. Vector field �22�. �a� A2�
4
3 �here A2=1.2�; �b� A2�

4
3

�here A2=1.8�. �c� gives a blow-up of a small neighborhood of the
origin in �b�.

FIG. 2. Vector field �22� with �=0. �a� A2�
4
3 ; �b� A2�

4
3 .
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t→ +�. The same is true for trajectories that have arrived
from the negative-� half-plane. Invoking the reversibility of
the system �22� with �=0, i.e., making use of the invariance
under t→−t, �→−�, completes the phase portrait �Fig.
2�b��.

To interpret the portrait, we note that � is proportional to
ż, the velocity of the wall �see Eq. �22a��. According to Fig.
2�b�, two walls with zero initial velocities ���0�=0� will at-
tract ���t�→� as t→��. The same applies, naturally, to the
walls whose initial velocities are directed towards each other
���0��0�, and to walls with small outward initial velocities
���0��0�. However, walls with sufficiently large outward
initial velocities will diverge ���t�→0�, with the separation
growing linearly: z�t�→− 6

�
�A2− 4

3
��*t as t→�. �Here �*

�0.� The dashed line in Fig. 2�b� is a separatrix between
initial conditions giving rise to the above two scenarios.

Finally, it is worth mentioning that when �=0, Eqs. �15�
with �1=�2=� and B=1 form a Hamiltonian system �with a
nonstandard bracket�:

ż =
1

��

�H

��
, �̇ = −

1

��

�H

�z
, �23�

where

���,�� = 1 + 2��1 − 14� + �2 + 10��2� � 0, �24�

and the Hamiltonian

H��,�� = �1 − 3h��2 − 2
3A2�4 + 4��2��1 − 3h�z + 4h�

+ 8
3�2�3A2 + �12 − 25A2��2 + 14A2�4 − 4A2�6�

+ 16�2z�2�5A2 − 4 − A2�2� .

This observation endows � with a simple interpretation of
the momentum canonically conjugate to z—in agreement
with qualitative arguments in Sec. III.

C. Small �A2− 4
3 �; small �

Finally, let us assume that both �A2− 4
3 � and � are small.

Here, Eqs. �16� are to be replaced by

��̇ = 12�A2 − 4
3��� + 64

9 �3� − 64
3 ��2, �25a�

���̇ + 2��� = 128
3 �2 + 32

3 ��2. �25b�

Note that we have neglected the term proportional to z=
− 1

2 ln � in the second line of �16b�. When A2− 4
3 �0, this is

justifiable as this term is of the same sign as the last term on
the right-hand side of �16b� and so it cannot alter the dynam-
ics qualitatively. The validity of this approximation for A2

− 4
3 �0 will be established below.
The dynamics is influenced by nontrivial fixed points

which arise as intersections of the nullclines of the system
�25�,

���12� + 64
9 �2 − 64

3 �� = 0, �26a�

128
3 �2 + 32

3 ��2 − 2��� = 0. �26b�

Here we have introduced

� = A2 − 4
3 . �27�

The nullcline �26b� emanates out of the origin as a pa-
rabola: �→ 64

3���2 as �→0; turns back and escapes to infinity
asymptotic to the positive � axis, �→ 3��

16 �−1 as �→0. Im-
portantly, it has no points in the ��0, ��0 quadrant. The
nullcline �26a� consists �apart from the vertical and horizon-
tal axes� of a parabola lying on a side: �= 3

4�+ 1
3�2. Intersec-

tions of these nullclines are easy to determine and visualize,
and the stability of the fixed points can be classified by
straightforward index arguments.

When ��0, there is only one nullcline intersection in the
positive-� half-plane. It is not difficult to check that this fixed
point is a saddle. The origin is also a fixed point—a stable
node. The portrait is in Fig. 3�a�. Distant walls �more pre-
cisely, walls with initial conditions lying below the stable
manifold of the saddle in Fig. 3�a�� repel: ��t�→0 as t→�.
On the other hand, nearby walls �more precisely, those above
the stable manifold� attract: ��t�→�.

As � grows through zero, another fixed point appears
from the negative-� half-plane. An exchange of stabilities
occurs at �=0: the nontrivial point appearing for ��0 is a
stable node whereas the origin becomes a saddle. The nearby
walls attract while distant walls form a stable bound state
�Fig. 3�b��. As � is increased further, the two nontrivial fixed
points merge in a saddle-node bifurcation. When ���sn, the
origin persists as the only fixed point in the system �an un-
stable one�. All walls attract �Fig. 3�c��.

Note that the logarithmic term in �16b� that was omitted
in �25b�, becomes of the same order as the last term on the
right-hand side of �16b� only if z�
1, i.e., when � is as
small as e−2/�. However, since the nullcline �26a� is bounded
from the vertical axis by the inequality ��

9
16�, there can be

no fixed points with �
e−2/�. Therefore the logarithmic term
can have no significant effect on the dynamics and its omis-
sion is totally legitimate.

To find the threshold �sn���, we eliminate � between
�26a� and �26b�. The resulting equation can be written as

�
7� − 27

16�

�3� − 27
16�

=
3�

16
� . �28�

If � is positive, the function F��� on the left-hand side of
�28� grows to infinity as �→ �9/16�� and �→�, and has a
minimum at �=�min= 1

126�31+�457��. The minimum value is
F��min�=F0�3/2, where F0 is a numerical coefficient. Conse-
quently, Eq. �28� has no roots if �� �3� /16F0�2/3�2/3

�0.3048�2/3 and two roots if 0���0.3048�2/3.
According to Eq. �28�, when � grows, the “smaller”

�stable� fixed point tends to �= 9
16�; this reproduces Eq. �21�

of Sec. IV A.
These considerations translate into the following criterion

valid for small � and small differences A2− 4
3 . �We are also

assuming that the imaginary parts of the perturbation of the
walls are small initially, i.e., ��0� is small.� The direction of
forces between the walls depends on their position relative
to two stationary bound states, a stable �with the interwall
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separation denoted 2zs� and an unstable one �with the sepa-
ration 2zu�. The unstable complex exists for all A2�Asn

2

while the stable one only for 4
3 �A2�Asn

2 , where

Asn
2 = 4

3 + 0.3048�2/3. �29�

In their region of coexistence � 4
3 �A2�Asn

2 �, the stable com-
plex has a larger separation: 2zs�2zu. As A2→ 4

3 , the dis-
tance 2zs grows to infinity.

When A2�
4
3 , two Néel walls repel if their separation dis-

tance is greater than 2zu. If the initial separation is smaller
than 2zu, the walls attract. It is natural to expect that the
attraction should result in the annihilation of the walls, but
this diagnosis is beyond the scope of the variational approxi-
mation and can only be established in direct numerical simu-
lations of the full partial differential equation �6� �see below�.

Next, if 4
3 �A2�Asn

2 , the walls with separations larger
than 2zu will move towards the stable equilibrium �from in-
side or outside depending on whether z�0��zs or z�0��zs�.
The walls at shorter distances, 2z�0��2zu, are attracted to
each other; they converge and, apparently, annihilate.

Finally, for A2�Asn
2 , the walls are attracted to each other.

No complexes, stable or unstable, can be formed for these
large A.

Like in the large-��� situation, the undamped case ��=0�
is exceptional in the small-��� region. In this case, the whole
� axis is a line of fixed points. When ��0, the phase por-
trait �Fig. 4�b�� is similar to Fig. 2�b�. The walls which are
initially at rest ���0�=0�, attract ��→� as t→��. As for the

FIG. 3. The vector field �25�. �a� ��0 �small initial conditions
are attracted to a stable fixed point at the origin; larger initial con-
ditions give rise to trajectories flowing to infinity�. �b� 0��
�0.3048�2/3 �initial conditions with small � and � are attracted to a
stable fixed point away from the origin; larger initial conditions
give rise to unbounded trajectories�. �c� ��0.3048�2/3 �no stable
fixed points, all trajectories flow to infinity�. The stable fixed point
is marked by a solid circle; the unstable one by an open circle.

FIG. 4. The vector field �25� for �=0. �a� A2�
4
3 ; �b� A2�

4
3 .
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moving walls with large separations, their initial velocities
are determined by ��0�,

ż�0� � −
��0�

�

6� +

32

9
�2�0�� . �30�

If the walls are initially diverging sufficiently fast, they will
continue to do so, with

��t� → �* � 0, z�t� → −
�*

�

6� +

32

9
�*

2�t .

The portrait for ��0 is in Fig. 4�a�. Restricting our
analysis to small ���0��, we observe that walls with large
separations repel and small separations attract. This is true
both for initially quiescent and slowly moving walls.

D. Numerical study of the fixed points; all �

As we have seen in Sec. IV, distant walls with A2�
4
3 are

attracted to each other. Whether the attracting walls are going
to form a stable bound state or collide and annihilate, de-
pends on two factors: �i� whether a stable and unstable bound
states exist for the corresponding � and A2, and if yes, then
�ii� how the initial interwall separation compares with 2zu,
the interwall separation in the unstable complex. For small �,
the region where the two complexes exist was found to be
4
3 �A2�Asn

2 , with Asn
2 as in Eq. �29�. In order to classify the

outcomes of the wall attraction, we need to demarcate the
corresponding region for nonsmall � as well.

The one-dimensional dynamical system �20� has only one,
stable, fixed point. In order to describe the unstable complex
�which is bound tighter than the stable one, i.e., has a greater
��, it is sufficient to retain the next, O��7�, term in Eq. �19�
when we substitute �18� for �. However, despite capturing
both the stable and unstable bound states, the system �18�-
�19� will not produce any reasonably accurate description of
the saddle-node bifurcation where the two fixed points merge
and disappear. One reason for this is that the term 32���2�2

in Eq. �16a� which was dropped from Eq. �19�, becomes
larger than �7 when we substitute �18� for �. Another prob-
lem is that Eq. �18� keeps only the leading term in the ����
expansion; retaining the next, O��5�, term in ���� produces
another term larger than �7 in Eq. �20�.

Thus, in order to obtain an accurate variational descrip-
tion of the saddle-node bifurcation, we need to return to the
original, nonreduced, vector field �16�. Denoting f�� ,�� and
g�� ,�� the right-hand sides of �16a� and �16b�, the two fixed
points arise as intersections of the nullclines

f��,�� = 0, g��,�� = 0. �31�

The nullclines have a common tangent when

f���,��
f���,��

=
g���,��
g���,��

. �32�

Using a standard numerical routine to solve the system �31�-
�32� for the vector of unknowns �� ,� ,A2�, one can find the
saddle-node value Asn

2 for each �.
The resulting curve A2=Asn

2 ��� is shown in Fig. 7 below
�the dotted line�, where it is compared to the data from the

numerical continuation of the wall complexes as solutions to
Eq. �6�. The significance of the curve is that it provides a
borderline between the two dynamical scenarios: For A2

�Asn
2 , two Néel walls attract each other and annihilate; for

4
3 �A2�Asn

2 , the walls attract and annihilate if the initial
separation 2z�0��2zu and form a stable bound state if
2z�0��2zu.

Note that the above numerical result is valid both for large
and small �. For small �, our numerical curve Asn

2 ��� is
reproduced by the explicit formula �29�.

We conclude this section by mentioning that the unstable
fixed point exists for all A2�

4
3 for which there are Néel

walls, i.e., for 1�A2�
4
3 . This is a result of the numerical

study of the system �31� with � varying from 0 to 1 in steps
of 0.01, and A2 varying from 1 to 4

3 in steps of 0.001. The
reservation that we should make here, however, is that when
� tends to 0 and, simultaneously, A2 tends to 1, the coordi-
nate � of the saddle point approaches a value of order 1. This
contradicts the assumptions we made in the derivation of the
system �16� and so the fixed point in this parameter region
cannot represent any bound states of the walls. �The value of
the � coordinate is reasonably small only when � is greater
than 0.5 or when �A2− 4

3 � is smaller than 0.01.� Consequently,
the variational analysis cannot provide a trustworthy descrip-
tion of the small-distance dynamics of the walls in the �
�0, A2�1 region. The direct numerical simulations of the
full NLS equation �6� seem to be the only reliable source of
information here.

V. BOUND STATE OF TWO DISSIPATIVE NÉEL WALLS

In the preceding section we showed that two bound states
of Néel walls, a stable and an unstable one, exist in certain
parts of the �� ,h�-plane. Here, we will reobtain these solu-
tions numerically, demarcate their regions of existence and
compare these to the corresponding variational results.

We will be using the term “solitonic bubble” as a syn-
onym for the wall complex. Treating bound states as inde-
pendent solitonlike entities is meant to emphasize the signifi-
cance of these stationary solutions as possible attractors in
the phase space; also, it should reflect their different, nonto-
pological, nature. In fact, when the complex is tightly bound,
it looks more like a single entity than a wall doublet; see Fig.
5.

Our approach here is based on the numerical continuation
�path-following� of the stationary bubbles as solutions to the
ordinary differential equation

A2

2

xx − A2�
�2
 + 
 + �A2 − 1�
* + i��
 − 
*� = 0.

�33�

The variational approximation �10� with parameters found in
Sec. IV C was used as an initial guess for the numerical
solution at small � and h� 1

3 ; this, in turn, served as a start-
ing point for our continuation. We classified the stability of
the resulting stationary complexes as solutions of the full
partial differential equation �6�, by linearizing about the so-
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lution and examining the spectrum of the linearized operator
numerically.

To present results of the continuation graphically, we use
the energy functional

E =
1

2
	 
�
x�2 + �
�4 − 2

�
�2 + h Re�
2�
A2 + 1�dx . �34�

Although the quantity defined in Eq. �34� is not conserved
for nonzero �, the energy can be used as a bifurcation mea-
sure for stationary solutions. �The field momentum �14� is

not suitable for this purpose as it satisfies Ṗ=−2�P and so all
stationary solutions with ��0 have the same, zero, momen-
tum.�

A typical pair of bifurcation diagrams �corresponding to
the separate continuations in h and �� is presented in Fig. 6.
�Figure 6 corresponds to �=0.35 �main frame� and h=0.5
�inset�; the continuations for other fixed values of � and h
produce curves of similar shape.� Each diagram consists of
two branches; the entire branch with higher energy is found
to be linearly stable. The solutions on the lower branch are
found to be unstable; the instability is associated with a
�single� positive real eigenvalue. Numerical simulations of
the full time-dependent PDE �6� show that when perturbed,
the unstable bubbles decay to the flat solution.

As we approach the termination point of the top branch,
the separation of the walls becomes infinite. The termination
point satisfies h���2+1/9 �i.e., A2� 4

3 �—therefore, this so-
lution reproduces the stable bound state detected by the
variational method �Secs. IV A and IV C�. The solution on
the lower branch corresponds to the unstable complex. We
note that this lower branch can be continued all the way to
h=�, in agreement with variational results in Sec. IV D.

The walls pull closer together as we move towards the
turning point along the upper branch �in the main frame of
Fig. 6�. As we continue away from the turning point along

the bottom branch, the distance between the walls continues
to decrease, reaches a minimum, and then starts increasing.
This nonmonotonicity can be explained in terms of the fixed
points of the dynamical system �25�.

FIG. 6. The energy of the dissipative bubble for the fixed �
�main panel� and fixed h �inset�. The solid and dashed branches
indicate stable and unstable solutions, respectively. The stable
branch terminates at the point where the distance between the walls
becomes infinite; this point is found to coincide with A2= 4

3 . This
termination scenario was predicted in Sec. IV using the variational
method.

FIG. 7. The existence and stability diagram of the bound states
on the �� ,h�-plane �obtained numerically.� The shaded corridor
marks the region of coexistence of the stable and unstable bubble.
Its upper boundary corresponds to the turning point where the two
bubbles merge; there are no bound states above this line. The dotted
curve gives the variational approximation �31� and �32� to the line
of turning points. The lower boundary of the shaded area corre-
sponds to the stable bound state of two infinitely separated walls �an
infinitely long stable bubble�. This numerical curve is visually in-
distinguishable from h=��2+1/9. In the strip between h
=��2+1/9 and h=�, only the unstable bubble is found. Inset: a
blow-up of the small-� region. Here, the dotted curve is plotted
using an asymptotic formula �29�.

FIG. 5. A bubble with a small distance between the walls �a
tightly bound complex� looks like a single entity. �Note that the real
part does not even reach −1 in the core region.� The solid and the
dashed lines stand for the real and imaginary part of 
, respectively.
For comparison, we also show a bubble with a wide interwall sepa-
ration arising for h2 close to �2+1/9 �inset�. Here only the real part
is shown as Im 
�x�=0.
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The existence and stability of the bound states is summa-
rized in Fig. 7. This figure charts the �� ,h� plane into regions
of different type of interaction between the walls. In the
shaded region and above it, distant walls attract each other.
The attraction may result in the creation of a stable bound
state at some finite separation; this happens in the shaded
domain. �The formation of the bound state is illustrated in
Fig. 8�c� below.� Above the shaded corridor, two attracting
Néel walls are expected to collide and annihilate. Finally, in
the region between the shaded area and the bisector line h
=�, two Néel walls at large separation repel.

In Fig. 7, we also display the variational results for the
saddle-node bifurcation curve hsn���. The dotted line in the
main frame gives the result of solution of the system of three
equations �31� and �32� while the dotted line in the inset was
plotted using Eq. �29�. The variational results are seen to be
in good agreement with the outcome of the numerical con-
tinuation.

VI. NUMERICAL SIMULATIONS: NÉEL WALLS

Conclusions of the variational analysis were verified in
direct numerical simulations of the NLS equation �6�. We
used a split-step pseudospectral method �26�, with N=512
Fourier modes on the interval �−L /2 ,L /2�= �−40,40�. The
numerical scheme is stable for the timesteps �t
��−1�L /N�2; accordingly, we set �t=2.5�10−3. The
method imposes periodic boundary conditions. The initial
condition had the form �10� where �1 and �2 were set equal
to zero. The results are shown in Figs. 8, where we have
“zoomed in” on the solitons neglecting the flanks of the
simulation interval.

To verify the diagram of Fig. 7, we examined three se-
quences of points on the �� ,h� plane: one just above the
shaded region, one just below it, and one inside. The se-
quence just above the saddle-node line consisted of 10 points
�=0.0,0.1, . . . ,0.9 with h=0.4+0.75�. For each pair of pa-
rameter values, we examined the initial separations 2z�0�
=3.0,4.0 and 5.0. The results were in agreement with the
diagram of Fig. 7: all simulations gave rise to the conver-
gence of the walls. For ��0, this resulted in the annihilation
of the walls �Fig. 8�a�� while in the dissipation-free case, the
convergence of the walls ended in the formation of a non-
propagating breather �Fig. 8�b��.

The sequence just below the line h=��2+1/9 consisted
of �=0.0,0.1, . . . ,0.9 with h=��2+0.09. In the �=0 case,
the walls separated by 2z�0�=4 were observed to repel
whereas those placed at a smaller distance 2z�0�=3, attracted
and formed a nonpropagating breather. These results are in
agreement with the variational analysis �see Fig. 4�a��. When
� is nonzero, the initial separations 2z�0�=3.0 and 4.0 gave
rise to the repulsion of the walls. In order to observe the
attraction, we had to reduce the initial distance to 2z�0�
=1.4 for �=0.1; to 2z�0�=0.8 for �=0.2 and to 2z�0�=0.1
for �=0.4. These observations are consistent with the fact
that zu, the separation in the unstable complex, becomes
smaller as � grows.

Finally, the sequence of points through the dashed region
in Fig. 7 included �=0.1,0.2, . . . ,0.8 with h= 1

3 +0.784�. For
these values of h, the variational method predicts a tightly
bound stable complex of two walls and indeed, in all eight
cases the walls with initial separations 2z�0�=3.0,4.0 and
5.0 moved towards each other and formed a stable bound
state at a certain smaller distance �Fig. 8�c��.

Thus the simulations of the Néel wall interactions are in
agreement with our expectations for distant-wall dynamics
summarized in Fig. 7.

VII. TWO BLOCH WALLS OF OPPOSITE CHIRALITIES

Proceeding to the analysis of Bloch walls, we remind the
reader that the Bloch walls exist only for �=0 and h�

1
3 ;

FIG. 8. Attraction of two dissipative Néel walls may result ei-
ther in the annihilation of two walls �a� �here �=0.1, h=0.5� or
formation of a bound state �c� �here �=0.1, h=0.41�. In the absence
of damping, the attraction results in the formation of a stationary
breather �b� �here h=0.5�. Simulations reported in panels �a� and �b�
correspond to a point �� ,h� lying above the shaded region in Fig. 7
while those in panel �c� pertain to a point inside this region. All
panels show the real part of 
, multiplied by −1 for better
visualization.
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these will be our assumptions in this section. Here, we con-
sider the interaction of two Bloch walls of opposite chirali-
ties �i.e., with total field momentum P=0�. The correspond-
ing Lagrangian arises by setting �1=�2=� and B=B in Eq.
�13�. The resulting equations of motion can be cast in the
form of a Hamiltonian system

ż =
1

��

�H

��
, �̇ = −

1

��

�H

�z
, �35�

where ��� ,�� is given by Eq. �24�, and the Hamiltonian

H��,�� = −
2A2

3B
��2 − �0

2�2 +
16h

B
��2

+
8

3B
�2�7 − 9h − 2�9 + 5h��2

+ �15 + 11h��4 − 4A2�6�

+ 16A2�2z�2�2 − �0
2 − �4� , �36�

with �=e−2Bz and �0 as in �9�. Trajectories of the system �35�
are simply level curves of the function H�� ,��.

When the interwall separation is large, � should be close
to its unperturbed value: ���0 or ��−�0, where �0 is, in
general, O�1�, but becomes small when h is near 1

3 . In the
derivation of the variational equations, we assumed that the
walls are well-separated and each wall is close to its unper-
turbed form. Therefore, only regions around the fixed points
�0,�0� and �0,−�0� can be interpreted within the PDE �6�
with full certainty. �Trajectories outside those regions may
also have infinite-dimensional counterparts but this requires
verification using direct numerical simulations of the full
PDE.� Note that �0�0 is the value of the imaginary part of
the right-handed Bloch wall at its center �see Eq. �8��, and
−�0�0 is the imaginary part of the left-handed Bloch wall at
its center. Therefore, the point �0,�0� represents a configura-
tion of the right-handed wall at x= +� and the left-handed
antiwall at x=−�. The point �0,−�0� corresponds to the left-
handed wall at x= +� and the right-handed antiwall at
x=−�.

Assume, first, that h is not close to 0 or 1
3 . When � is small

and � is close to ±�0 �which are not small�, terms in the third
and second lines in �36� are much smaller than the second
term in the first line, and can be safely disregarded. The
resulting dynamical system

�̇ =
16

3
A2����2 − �0

2�, �̇ = 32h��2,

does not have fixed points with nonzero � and �; on the other
hand, the entire � axis is a line of nonisolated fixed points.
All these points describe pairs of walls moving with constant
velocities ±ż, where

ż = −
8�1 + h�

3�B
���2 − �0

2� .

Points on the positive-� semiaxis with ���0 are stable and
those with ���0 unstable. Points on the negative-� semiaxis
with ��−�0 are stable and those with ��−�0 unstable. �See

Fig. 9.� Consequently, walls with large initial separation
���0� near 0� and ż�0��0 diverge to infinities ��→0�,
whereas distant walls with ż�0��0 converge.

As for the pairs of walls whose separation is not very
large, the situation is straightforward for the walls which are
not moving initially �ż�0�=0�; the corresponding initial con-
ditions lie on the straight lines �= ±�0 �dashed lines in Fig.
9.� These initial conditions give rise to the convergence of
the walls �i.e., � grows as t→��. Otherwise, the type of
interaction depends on whether the point ���0� ,��0�� lies to
the left or to the right of the heteroclinic trajectory �the tra-
jectory which connects the point �0,−�0� to �0,�0�—this tra-
jectory is tangent to the vertical axis in Fig. 9.�

These variational conclusions are in agreement with direct
numerical simulations of the full PDE �6�. �We employed the
same numerical method as described in Sec. VI.� The initial
condition was chosen in the form of two Bloch walls of the
opposite chirality which are initially at rest, i.e., Eq. �10�
with �1=�2=�0. The initially quiescent walls have always
been observed to attract; see Fig. 10.

When h is close to 1
3 , �0 is small; since � is assumed to be

in the vicinity of ±�0, we cannot neglect terms in the third
and second lines in �36� in favor of the first line. However, it
is sufficient to keep just the leading term �the term propor-
tional to 7−9h in the second line�. A straightforward analysis
reveals then that the situation here is similar to the one con-
sidered above: there are no fixed points with small nonzero �,
while the � axis is a line of nonisolated fixed points, stable
for ���2−�0

2��0 and unstable otherwise. Therefore the
phase portrait for small � and � is similar to the one above.

When h is close to 0, the last term in the first line of �36�
becomes small and hence no terms in the third and second
lines can be discarded. In this case, the dynamics can be
analyzed by plotting level curves of H using standard soft-
ware. The same approach was adopted to study the vector
field outside the small-� region.

The resulting phase portrait is shown in Fig. 9 for h
=0.1; the portrait does not undergo any qualitative transfor-

FIG. 9. Trajectories of the system �35� obtained as level curves
of the Hamiltonian �36�. �Here h=0.1.� Two points at which the
trajectory is tangent to the � axis, correspond to stationary pairs of
walls. The dashed lines are �= ±�0; the initial conditions lying on
these lines pertain to stationary walls, ż�0�=0.
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mations as h is increased up to 1
3 or decreased down to 0. A

striking feature of Fig. 9 is the existence of three families of
closed orbits: one centered on a point with ��1; a mirror-
reflected family centered on a point with ��−1; and a fam-
ily of closed trajectories centered on a point on the horizontal
axis.

The closed trajectories centered on the fixed point with
��1 represent a family of breather solutions of the NLS �1�
�and so do their mirror-reflected twins�. These breathers have
been observed in our numerical simulations of the full partial
differential equation �6�; see Fig. 10. They can also be con-
structed perturbatively �see Sec. IX below�. The nonlinear-
center fixed point is sandwiched between two saddles, one
below it �clearly visible in Fig. 9� and one above. As h is
decreased, the two saddle points approach each other. As a
result, the periodic orbits are compressed in the vertical di-
rection, and, as h reaches zero, the family of closed trajecto-
ries degenerates into a segment of the straight line �=1.

The closed loops about a nonlinear-center fixed point with
�=0 represent another family of temporally periodic solu-
tions. Since the value of � for a free-standing wall �i.e., �0� is
close to zero only when h is close to 1

3 , the family centered
on �=0 admits a reliable interpretation only in this limit.
When h=0, the centre point has the coordinate ��0.06; as h
grows to 1

3 , the center moves towards the origin so that the
family of closed orbits shrinks to a single point �=0, �=0.
For h close to 1

3 , i.e., in the region where these solutions can
be interpreted in terms of the two-wall Ansatz �10�, the
closed trajectories describe a pair of Bloch walls of opposite
chiralities executing periodic oscillations of their separation
�but remaining far away from each other.� These oscillatory
“doublets” have not yet been observed in direct numerical
simulations and their existence remains an open problem.
�See the concluding section for a possible explanation of the
“nonvisibility” of these objects.�

VIII. TWO BLOCH WALLS OF LIKE CHIRALITIES

Finally, we examine the case of a pair of Bloch walls
�more precisely, a wall and an antiwall� of the same chirality.

As in the preceding section, we let �=0 and consider h�
1
3 .

Assume, for definiteness, that we have a right-handed pair.
When at rest, the well-separated wall and antiwall have equal
�nonzero� momenta PB=−��0 where �0 is as in �9�. When
the walls start moving as a result of their interaction, the total
momentum remains the same and hence the individual field
momenta of the two walls will change by the same amount:
one will become P1=−���0+q� and the other one P2=
−���0−q�. This means that one of the walls will have the
amplitude of its imaginary part increase by q and the other
one decrease by q, and so we will not have a symmetric
configuration of an equal-amplitude wall and antiwall any
longer. Therefore one may question the validity of our as-
sumption that the two walls remain equal distance away from
the origin for t�0. To see that the equal-distance Ansatz �10�
remains valid—at least for not too late times—we note that
the velocity-momentum curve P�v� of a single Bloch wall
has a nonzero slope at the point v=0,P= PB �see Ref. �5�; the
curve is also reproduced in paper II of the present series of
papers �19��. This means that the wall whose momentum has
increased by �P=�q, acquires the velocity �v, while the
wall whose momentum has decreased by �P=�q, starts
moving with the velocity −�v where �v= �dP /dv�−1�P. Ac-
cordingly, if two walls are equal distance from the origin
initially, they will remain equally far from the origin for all
t�0. This symmetric arrangement will break down only if
�P is very large or if �dP /dv�−1 is very small, in which case
one would have to take into account deviations of the shape
of the P�v� curve from a straight line. The derivative
�dP /dv�−1 tends to zero only if h→ 1

3 and indeed, numerical
simulations do reveal nonsymmetric motion of like-chirality
walls when h is very close to 1

3 �see below�, but outside this
narrow region the symmetric Ansatz �10� remains valid.

Letting �1= ��0+q, �2= ±�0+q and B=B in the La-
grangian �13�, we get equations describing the dynamics of
two like-chirality Bloch walls. These can be written as a
Hamiltonian system

ż =
1

��

�H

�q
, q̇ = −

1

��

�H

�z
, �37a�

where

���,q� = 1 + 2��1 − 14� − 3�1 − 6���0
2 + �1 + 10��q2� � 0

and the Hamiltonian

H�z,q� = −
2A2

3B
�4�0

2 + q2�q2 −
16h

B
���0

2 − q2�

+
8

3B
�2
7 − 9h −

�0
2

A2 �7 + 38h + 79h2�

−
4

A2 �3 + 12h + h2�q2 + �19 − h�q4 − 4A2q6�
+ 16�2z�4h�0

2 + 4�1 − h�q2 − A2q4� . �37b�

Assume, first, that h is not close to 1
3 , so that �0 is not a

small quantity. In this case the Hamiltonian �37b� with small
� and q is dominated just by two terms,

FIG. 10. Attraction of Bloch walls with opposite chirality; this
attraction results in a long-lived breather. �In this plot, h=0.1.� To
highlight the chiralities of the Bloch walls, the imaginary part of 

is shown. �We remind that in the case of the wall-antiwall configu-
ration that we are considering, the same signs of the imaginary parts
imply opposite chiralities of the walls.�
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H�z,q� � −
8

3B
A2�0

2q2 −
16h

B
�0

2� . �38�

As in the preceding section, the q axis in this case is a line of
nonisolated fixed points. Since ż�−�16A2�0

2 /3�B�q, points
with q�0 and q�0 represent pairs of converging and di-
verging walls, respectively. The trajectories are parabolas �
=�*− �A2 /6h�q2; they start at points on the positive-q semi-
axis and flow into points on the negative-q semiaxis. This
implies that the initially diverging walls continue to diverge
whereas the walls initially moving towards each other shall
stop at some finite separation, and then repel to infinities. �A
simple but practically important situation concerns walls
which are initially at rest; these will obviously start repelling
straight away.� The above conclusion applies, of course, only
to slowly moving walls which are sufficiently far from each
other �i.e. ��0� and q�0� are small�.

Figure 11�a� displays a typical result of direct numerical
simulation of the interaction of two like-chirality Bloch walls
within Eq. �6�. We tested several values of h and a variety of
z�0�. The initial condition was taken in the form �10� with
�1=−�0 and �2=�0. In agreement with conclusions of the
variational analysis, the initially quiescent walls were ob-
served to repel for all h not very close to 1

3 . �The case of h
close to 1

3 is discussed below.�

As h tends to zero, the phase portrait does not undergo
any qualitative changes. However, the turning point of the
parabola starting at a point q* on the q axis, �*
= �6h�−1/2Aq*, is shifted out of the small-� region, i.e., out of
the range of applicability of variational approximation. Con-
sequently, we can no longer expect the initially converging
walls to stop a large distance away from each other and repel
to infinities after that. Instead, for h
0 the colliding like-
chirality Bloch walls should penetrate into the core of each
other, and the numerical simulations of the full PDE could be
the only way to study the outcome of this deep impact.

Next, let h be near 1
3 . In this case the Hamiltonian �37b�

with small � and q reduces to

H�z,q� � −
8

9
�4�0

2q2 + q4 + 6�0
2� − 6�q2 − 12�2� .

The dynamics with very small � and q is similar to the one
described by Eq. �38�: distant pairs of walls with ż�0 di-
verge while those which are initially set to converge �ż�0�
slow down, stop and then repel to infinities �Fig. 12�a��. A
new feature in the �h� 1

3
�-case is a saddle point at �� ,q�

= � 1
4�0

2 ,0� and a region of attraction which is separated from
the region of repulsion by the stable manifold of the saddle
�Fig. 12�a��. This fixed point was previously discovered in a
variational analysis of the �2:1�-resonantly forced Ginsburg-
Landau equation �27�. Although it would be tempting to
think that it represents a stationary complex of two Bloch
walls of like chiralities, the actual interpretation of the sta-
tionary point turns out to be somewhat different.

Indeed, it was proved in Ref. �21� that in the absence of
damping, two Bloch or two Néel walls cannot form station-
ary complexes. On the other hand, letting �1=−�2=−�0 and
e−2z=�0

2 /4 with small �0, the trial function �10� can be writ-
ten, approximately, as

Re 
 =
e2x + e−2x − e2z

e2x + e−2x + e2z ,

Im 
 =
4�ex − e−x�

e2x + e−2x + e2z .

This coincides with the expression for the Bloch-Néel bound
state �Eq. �11� of Ref. �19�� with s=0 and �=−1, where we
only need to send B→1 and make the identification e2�

= 1
2e2z. Therefore, the “bound state” of two like-chirality

Bloch walls produced by the variational analysis is, in fact,
the Bloch-Néel complex with s=0. The reason why the
Bloch-Néel complex could be mistaken for a complex of two
Bloch walls, was simply because the Bloch and Néel walls
become indistinguishable as h→ 1

3 .
The appearance of the region of attraction for h close to 1

3
deserves a special comment. The attraction becomes possible
due to the smallness of �0 in this limit. Indeed, for suffi-
ciently small �0, the momentum �1= ��0+q becomes close
to �2= ±�0+q—which is characteristic for two Bloch walls
of opposite chirality. Thus, in the limit h→ 1

3 , the walls may
effectively change their chiralities.

FIG. 11. Interaction of Bloch walls of like chiralities. The
imaginary part of 
 is shown. �a� Repulsion for generic h. �Here
h=0.15.� �b� For h close to 1

3 , the walls may attract and produce a
breather on collision. �In this plot, h=0.333.� Note that before the
walls start converging, the wall on the left changes its chirality to
the opposite. �We remind that in the case of the wall-antiwall con-
figuration that we are considering, opposite signs of imaginary parts
imply like chiralities of the walls.�
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It is instructive to consider the full phase portrait of the
system �37�; we produce it by plotting level curves of the
Hamiltonian �37b� beyond the region of small � and � �Fig.
12�b��. A remarkable feature here is a family of closed orbits
surrounding a nonlinear-center point. The center is born,
along with the saddle point, in a saddle-center bifurcation as
h is increased past 0.189. The presence of periodic orbits
suggests that breathers may be formed in the collision of
Bloch walls of like chirality.

As h→ 1
3 , the saddle point � 1

4�0
2 ,0� moves closer to the

origin and so the periodic orbits pass near �=0. Accordingly,
in this limit the breathers should be accessible from initial
conditions in the form of well-separated pairs of walls. We
note, however, that all closed orbits pass also through a re-
gion of large �. �In fact, as h→ 1

3 , the coordinate of the non-
linear center tends to infinity: �c→exp�1/�0

2�.� Conse-
quently, the formation of the breathers requires accurate
testing within the full PDE. In our numerical simulations
with h close to 1

3 , we have indeed observed the attraction of

walls with moderate separations �e.g., with �=0.005 in the
case of h=0.33 and �=0.001 in the case of h=0.333� fol-
lowed by the formation of a breather �Fig. 11�b��. It is inter-
esting to note that the attraction of two like-chirality walls
with h
 1

3 proceeds via the chirality transmutation: first, one
of the walls changes its chirality to the opposite; after that,
the two opposite-chirality walls attract.

Finally, we need to mention an anomaly in the interaction
of two like-chirality walls which was observed in some of
our simulations with h near 1

3 . The walls which are initially
at rest and equal distance away from the origin, would start
moving with different velocities or even in the same
direction—violating our Ansatz �10� based on the assump-
tion of a symmetric arrangement for all t. This asymmetric
anomaly is observed in a wider range of h-values near h= 1

3
than the chirality transmutation �we detected the former for h
as far from 1

3 as h=0.30� and has a straightforward explana-
tion in terms of the P�v� curve. As h→ 1

3 , the derivative
dP /dv tends to infinity at the points where the S shaped
P�v�-curve intersects the P axis and so the equation �v
= �dP /dv�−1�P must be amended by keeping the symmetry-
breaking term in ��P�2. It is this term that causes the asym-
metric motion of the two walls. The anomalous interaction is
typical for Bloch-Néel pairs and can be interpreted as the
interaction of particles with the opposite mass sign �19�.

The fact that the motion of two walls must be asymmetric
becomes even more obvious if one notices that the left and
right turning points of the S-curve approach v=0 as h→ 1

3 .
As a result, the motion in the direction of the turning point
becomes hampered. When h is extremely close to 1

3 , a new
channel of interaction becomes available; namely, the wall
which is repelled by its partner in the “hard” direction, may
“tunnel” through the P�v�-barrier by means of the chirality
transmutation, and the original symmetric arrangement re-
mains undisturbed.

IX. OTHER LOCALIZED ATTRACTORS:
NONDISSIPATIVE BREATHERS

In the nondissipative situation ��=0�, colliding walls
form a moving or quiescent breather: a temporally oscillat-
ing, spatially localized structure. The breather was formed,
for at least a short time, in every undamped collision that we
simulated. The formation of the breather is accompanied by
the release of a large amount of radiation; the numerical
simulations reveal that the breather carries only about a quar-
ter of the energy of the initial configuration, and so the re-
maining three quarters must escape into the radiation field.
As a result, when the interval of simulation is too short, the
interaction of the breather with the radiation reentering the
interval via the periodic boundaries is strong enough to de-
stroy it after just a few oscillations. On a large interval, how-
ever, the amplitude of the reentering radiation is small due to
the dispersive broadening, and the breather persists indefi-
nitely.

The breather can be easily constructed perturbatively.
First of all, a harmonic solution �
=ei��t−kx� of the NLS �6�
linearized about 
=1 obeys the dispersion relation

FIG. 12. Trajectories of two Bloch walls with like chiralities on
the �� ,q�-plane. �a� h close to 1

3 �h=0.33 in this plot�. Note that the
saddle point has small � here; as a result, there is a region of attrac-
tion within the range of validity of the variational approximation.
�b� Generic h �h=0.2 in this plot�. The family of closed orbits
describe breather solutions of the NLS �1�. Note that unlike in �a�,
the saddle point and the region of attraction arise at small interwall
separations in �b�.
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�2 = 
1 + 2h +
k2

2
�2

− 1.

The �k=0�-harmonic oscillates with a nonzero frequency
�0=2�hA; therefore, one may also expect to find a broad
small-amplitude breather oscillating with that frequency. We
write


�x,t� = 1 + �
1�X1,X2, . . . ,T0,T1, . . . �

+ �2
2�X1,X2, . . . ,T0,T1, . . . � + . . . , �39�

where Xn=�nx, Tn=�nt and � is a small parameter, and sub-
stitute �39� in Eq. �6�. Setting to zero coefficients of �1 and
�2, we find


1 = u1 + iv1, 
2 = u2 + iv2, �40�

where


u1

v1
� = 
 2h

i�0
� 	

2h
ei�0T0 + c.c. �41�

and


u2

v2
� = 
1 + 2h

i�0
�	2

2h
e2i�0T0 − 
1 + 4h

0
� �	�2

2h
+ c.c. �42�

Here the amplitude 	 depends only on long scales X1 ,X2 , . . .
and slow times T1 ,T2 , . . ., while c.c. indicates the complex
conjugate. The solvability condition at the order �2 is
�	 /�T1=0, so that 	, in fact, is independent of T1: 	
=	�X1 ,X2 , . . . ,T2 ,T3 , . . . �.

At the order �3, the solvability condition forces 	 to obey
the attractive unperturbed nonlinear Schrödinger equation

− 4i
�h

A

�	

�T2
+ �1 + 2h�

�2	

�X1
2 + 8�1 + 4h��	�2	 = 0. �43�

The breather results if we choose 	 in the form of the soli-
ton:

	 = 	0 sech
2�1 + 4h

1 + 2h
	0�X1 − VT2��

�exp
− i
A�1 + 4h�

�h
	0

2T2 + V
�h

A�1 + 2h�
�2X1 − VT2�� ,

�44�

where 	0 and V are free parameters describing the amplitude
and velocity of the soliton, respectively. Substituting Eq. �44�
into �39�–�41� and defining the amplitude of the breather a
=�	0 and its velocity v=�V, we obtain, finally,

Re 
 = 1 + 2a sech
2�1 + 4h

1 + 2h
a�x − vt��

�cos
�t − v
�h

A�1 + 2h�
�2x − vt�� + O��2� ,

�45a�

Im 
 = −
2aA
�h

sech
2�1 + 4h

1 + 2h
a�x − vt��

�sin
�t − v
�h

A�1 + 2h�
�2x − vt�� + O��2� ,

�45b�

where

� = �0 −
A�1 + 4h�

�h
a2. �46�

We carried out numerical simulations of Eq. �6� with Eq.
�45� as an initial condition, with a variety of �small� values
of a. �We confined our simulations to the case v=0.� For all
values of h and a we tried, the breather persisted for the full
length of the simulation �approximately 1000 periods of the
breather’s oscillation�, with virtually no change. The mea-
sured frequency of oscillation coincided with the asymptotic
value �46� up to the third decimal place.

Simulations were also performed with a Gaussian initial
condition


 = 1 + �e−�x2
, �47�

for a number of small complex values of � ��� � �0.5� and
positive �. All runs resulted in the formation of a breather,
although in some cases �for �� � �0.3�, the emerging breather
would break into a pair of counterpropagating breathers. In
those cases where the emerging breather was nonmoving, its
shape and frequency were found to be in an excellent agree-
ment with the asymptotic formula �45�.

X. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we studied the interactions between the
similar-type dark solitons of the nonlinear Schrödinger equa-
tion, i.e., Bloch-Bloch and Néel-Néel interactions. Our ap-
proach was based on the variational approximation �also
known as the collective-coordinate, or variation-of-action,
method�. The variational conclusions were verified using nu-
merical continuation of solutions of the stationary damped-
driven NLS �33� and via direct numerical simulations of the
full partial differential equation �6�.

A. Conclusions

In the dissipative situation ���0�, the only available soli-
tons are the Néel walls. When two Néel walls are very far
apart, their interaction is simple: the walls repel if h2��2

+ 1
9 and attract if h2��2+ 1

9 . The repelling walls diverge to
infinities; as for the case of attraction, there are two possible
scenarios. In order to distinguish between the two, one is led
to consider the situation where the walls are closer to each
other �but still sufficiently far apart for the large-separation
approximation �10� to remain valid.�

At these shorter distances, the dynamics is influenced by
two bound states, a stable and an unstable one. The stable
bound state exists for h between ��2+1/9 and a threshold
driving strength hsn, and the unstable one exists for all h
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�hsn. Here hsn
2 =�2+ �Asn

2 −1�2 where Asn
2 ��� is defined as a

root of the system �31�-�32�. For small �, the curve hsn���
can be described explicitly,

hsn = 1
3 + 0.3048�2/3. �48�

�This is Eq. �29� written in terms of h and �.� In their region
of coexistence, the stable complex has a larger separation,
2zs�2zu.

When h is smaller than ��2+1/9, the walls repel if their
separation distance 2z�0� is greater than 2zu, the interwall
separation in the unstable complex. If 2z�0��2zu, the walls
converge and annihilate. �This verdict does not extend to the
region where both h and � are small. In this region the varia-
tional analysis of the small-separation dynamics is inconclu-
sive.� When ��2+1/9�h�hsn, pairs of Néel walls with
separations 2z�0� larger than 2zu evolve towards the stable
bound state while those with 2z�0��2zu converge and anni-
hilate. Finally, the walls with h�hsn converge and annihilate
irrespectively of their initial separation. These results pertain
to walls at shorter distances �which are however sufficiently
far apart for the variational approximation to remain valid�.
In particular, they answer the question as to what finally
happens to the two walls attracted from very large distances.

The nondissipative case requires a separate summary.
Here the walls can move at constant speeds and the interac-
tion pattern becomes complicated by the presence of inertia.
When h is greater than 1

3 �by small or large value�, the Néel
walls attract and converge—unless the initial condition cor-
responds to walls having large and opposite velocities. In the
latter case the attraction is unable to stop the diverging walls
and they escape to infinities. On the other hand, when h is
smaller than 1

3 , the walls repel. The exception here is the case
where h is close to 1

3 ; in this case walls with very large
separations repel whereas walls which are not so far from
each other, attract.

In the dissipation-free case, the available dark solitons
also include Bloch walls. The interaction between two Bloch
walls depends on their relative chiralities: two initially qui-
escent, oppositely handed Bloch walls attract while two qui-
escent walls with like chiralities placed at a large distance
away from each other, repel. The exception is the case of h
close to 1

3 ; in this limit, two walls of like chirality repel at
large distances but exhibit anomalous interaction or trans-
mute into an opposite-chirality pair and attract—when placed
closer to each other.

These conclusions can be extended to the case of the mov-
ing Bloch walls, where one just needs to take their inertia
into account. For example, two initially diverging oppositely
handed walls at large separation will continue to diverge de-
spite the attraction whereas two likely handed walls which
were initially moving against each other, will continue to
converge �until the repulsion stops them and sends away to
infinity�.

In addition to the interactions between well-separated
walls, we investigated products of their collision. When the
system is not damped, the collision of two walls results in a
stationary or travelling breather. We reconstructed the nu-
merically found breather as an asymptotic series.

When � is nonzero, oscillations are damped and the only
nontrivial product of collision of two Néel walls is a station-
ary bubble—the bound state of two Néel walls. Using the
numerical continuation of solutions to the ODE �33�, we de-
marcated the bubble’s domain of existence in the parameter
space. �This domain is, naturally, a subset of the part of the
�� ,h�-plane in which remote walls attract.� The numerical
demarcation is in excellent agreement with the domain of
existence obtained variationally.

B. Open problems

�1� We complete the paper by listing several open prob-
lems to which we plan to return in future. One interesting
problem that merits further investigation, concerns the �un-
stable� bubble solution with small h and �. �This solution is
exemplified by Fig. 13.� Our numerics and the variational
analysis in Sec. IV D show that this solution cannot be re-
garded as a complex of two Néel walls, not even strongly
overlapping ones. Its asymptotic behavior is closer to that of
a Bloch wall; however, Bloch walls do not exist in presence
of damping. Furthermore, the bubble cannot be continued to
�=0 and hence does not have a nondissipative analogue in
the form of a bound state of two Bloch, or a Bloch and a
Néel, walls. �This follows from the fact that the Néel wall is
the only solution in the �=0 domain which admits continu-
ation to nonzero � as it is the only solution with zero mo-
mentum �5�.� Thus a question arises whether the bubble with
small h and � could be interpreted as a complex of two
hypothetical “dissipative Bloch walls” of opposite
chiralities—which do not exist individually but can exist as a
bound state due to the cancellation of their opposite mo-
menta. A similar momentum cancellation occurs in the at-
tractive damped-driven NLS where it allows complexes to
travel with nonzero speeds despite the fact that their constitu-
ent solitons are immobile �28�.

A related question concerns the short-distance Néel wall
dynamics with small h and �. This problem is inaccessible to
the variational method, and the direct numerical simulations

FIG. 13. The tightly bound complex of two Néel walls with
small h and �. The solid and dashed line depict the real and imagi-
nary part, respectively. Note an enormous spatial extent of the
bubble.
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of the full PDE seems to be the only appropriate line of
attack here.

�2� With regard to the Bloch walls, an open problem con-
cerns the family of closed orbits centered on �=0 in Fig. 9.
When h is close to 1

3 , these periodic orbits can be interpreted
within the full partial differential equation �1�, as pairs of
opposite-chirality Bloch walls executing periodic oscillations
of their separation. It is not impossible that these periodic
solutions exist also for h not so close to 1

3 �where the validity
of the well-separated Ansatz �10� becomes questionable�. It
remains to be understood why these orbits have not been
observed in our numerical simulations of Eq. �1�, with either
h. One possible explanation stems from the fact that the
nonlinear-center fixed point enclosed by this family of closed
orbits, corresponds to a maximum of the energy �13c�. Con-
sequently, the nonlinear modes not captured by our two-
dimensional Ansatz �10�—such as radiations—should make
the point �� ,�� slide downhill towards orbits with larger ra-
dii, until it crosses through the homoclinic trajectory and
ends up at �=0. �It is pertinent to note here that the center
points enclosed by the other two families of closed orbits in
Fig. 9 are minima of the energy �13c�; this is consistent with
the stability of the corresponding breather solutions observed
in numerical simulations in Sec. VI.�

�3� Next, it would be interesting to simulate collisions of
the like-chirality Bloch walls with h
0. This case is not
amenable to the variational analysis due to the large extent
�“width”� of the walls.

�4� It would also be interesting to gain a deeper theoretical
insight into the anomalous interaction of the like-chirality
Bloch walls arising for h close to 1

3 . The variational approach
remains a proper tool here; one should only generalize the
Ansatz �10� by allowing nonsymmetric configurations of the
walls:

�1�x,t� = tanh�B�x + z1�� − i�1 sech�B�x + z1�� ,

�2�x,t� = tanh�B�x − z2�� + i�2 sech�B�x − z2�� . �49�

Here z1 ,z2 and �1, �2 are unrelated pairs of variables.
�5� Finally, one more future challenge is the analysis of

the interaction of two breathers and their synchronization to
a common frequency.
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